
BLOCKCHAIN IN
HYPERLEDGER:

C A S E S T U D Y

A technical walkthrough
of a permissioned

reference blockchain
implemented with

Hyperledger Fabric with
focus on the potential

value for enterprise-level
organizations.

OVERVIEW

TECHNOLOGIES
Blockchain, Hyperledger Fabric, Go,

Node.js, Go, Docker

BETTER THAN ETL?

Case Study
 Blockchain in Hyperledger

Introduction To Case Study

4?FŁǮğĞĞŘĜęĘŘĞĞĝĠ
;MENB?N?;GƄE?SBIF?MI@NQ;L?Ł=IG
BNNJMŃŶŶE?SBIF?MI@NQ;L?Ł=IG

In general terms, a blockchain is an immutable transaction ledger in a distributed network of
participating peers. Its data includes a string of transaction records secured with cryptography.
Benefits of blockchain can include decentralization, immutability, provenance, and finality.

While Bitcoin and Ethereum cryptocurrencies brought blockchain to the forefront of
technology headlines, the technology underneath has true potential value for the enterprise
outside of the cryptocurrency space. The features provided by blockchain technology can lead
business benefits like lower costs, higher efficiency, and lower risk. Seeing a technology actually
applied reinforces understanding. It can also be a genesis for new ideas.

Use cases in the enterprise are very different than in the cryptocurrency world. One glaring
difference is the need for the enterprise to know the participants of the blockchain, particularly
when financial or governmental regulations must be followed. This is a key difference: public
versus permissioned networks. While many existing blockchain technologies have been adapted
to fit enterprise use, there is a benefit to using a platform designed to be used by the enterprise.

Hyperledger is an umbrella project of open source blockchains and related tools with a number of
frameworks for distributed ledgers underneath. It is a modular, pluggable blockchain framework
supported by the Linux Foundation.

Hyperledger Fabric is the Hyperledger project used for our blockchain implementation.
Hyperledger Fabric provides the infrastructure to implement ċpermissionedČ blockchain networks
with custom consensus mechanisms. The framework is written in Googleĉs Go language and is
highly configurable.

Introducing Hyperledger Fabric

In this case study, we walk through a Hyperledger Fabric reference blockchain
with a focus on showing the potential value for enterprise-level organizations.
We assume that you, as the reader, have a fundamental understanding of blockchain technology.
If you do not, here is a link to our white paper on the topic: http://bit.ly/KHSblockchainWP.

The potential cost savings of blockchain is one of the benefits not really discussed as a whole.
However, we at Keyhole believe it could be a significant feature benefit. The goal of this case
study is to help reinforce this.

Case Study
 Blockchain in Hyperledger

Applying Distributed Blockchain Technology with Hyperledger

4?FŁǮğĞĞŘĜęĘŘĞĞĝĠ
;MENB?N?;GƄE?SBIF?MI@NQ;L?Ł=IG
BNNJMŃŶŶE?SBIF?MI@NQ;L?Ł=IG

With this ETL reference in mind, letĉs apply distributed blockchain technology.

In a permissioned blockchain, a multitude of organizations and users participate in an
authenticated manner. Hyperledger Fabric provides a MSP (Membership Service Provider)
service to support this. Each organization that participates in the blockchain network is
issued a digital certificate for access to the network.

Public/private keys are also generated for each organization and its users. These keys are
used to digitally sign transactions, identify/authenticate themselves, and spin up a
HyperLedger Peer on-domain address and port.

All user identities and addresses are known in a permissioned blockchain. This information is
stored in the genesis block of the blockchain. Blockchains are appended for everything but
this network meta-data stored in the genesis block.

When new nodes are added or removed, the
Hyperledger network updates the genesis block
located on all Peer Nodes. Peer Nodes can
create Smart Contract transactions (ċchaincodeČ
in Hyperledger) that go through the consensus
mechanism (ċOrderer NodesČ in Hyperledger). If
valid, all Peer Nodes are updated, confirmed,
and a consensus is achieved.

Here is a diagram illustrating the participating
nodes in a Hyperledger peer-to-peer network:

Each organization participating in the blockchain network will be a Peer or Endorsing Peer Node
with the ability to create ledger transactions. However, Endorsing Peers have the authority to
execute chaincode, which is a part of Hyperledgerĉs consensus mechanism.

Compared to the ETL scenario from earlier, what we end up with is a network of authenticated
peers adding and consuming the same immutable data source. There is no data duplication or
need for heavy processes to get and add new transactions to the chain. This is a read and add
only data source Ć no updates or deletes. This allows a strong level of confidence in the data and
allows code that is written to be hardened around that. Instead of an extract, transform and load
process Ć you simply pull the data you need from the stack and consume it downstream.

Case Study
 Blockchain in Hyperledger

Consensus

4?FŁǮğĞĞŘĜęĘŘĞĞĝĠ
;MENB?N?;GƄE?SBIF?MI@NQ;L?Ł=IG
BNNJMŃŶŶE?SBIF?MI@NQ;L?Ł=IG

Cryptocurrency: Proof of Work Consensus
Cryptocurrency frameworks tend to use a
proof of work (PoW) type of consensus. In
PoW, block miners compete for ownership
of transactions in the network, forming a
block with them, then sending them to all
peers in the network for execution and
validation of the blocks. The PoW-type
consensus requires chaincode to be
implemented in a deterministic language
since the execution and results must always
end up with the same result.

Hyperledger Consensus
Alternatively, the Hyperledger
consensus mechanism is driven by
the Orderer Service. The Orderer
Service will gather transactions,
then a subset of Endorsing Peers
will execute the chaincode. If valid,
they will order the transactions in a
block and disseminate to the Peer
Nodes, where the block will be
validated and applied to the
blockchain.

Hyperledgerĉs approach allows a non-deterministic language like Java, Go, or JavaScript to
implement chaincode. It also scales better than a PoW consensus mechanism. Itĉs worth noting
that Hyperledgerĉs consensus algorithm is pluggable, so a custom consensus mechanism can be
used.

Chaincode is programming logic that is installed and executed on a Channel (ledger). Chaincode
procedures accept parameters specified by the Peer Node/User that request a transaction be
executed. (Yes, a stored procedure is an appropriate analogy.)

When chaincode is invoked in a transaction, it will read and write data from the world state
database. By default this is CouchDB. This is not the blockchain datastore, its purpose is to hold
the latest data values for key IDs in the blockchain. All the blocks in the chain are stored on the
file system in blockchain format. Transactions store a read/write set of values of the chaincode
invocation.

This is a super simple and brief overview, but the idea is powerful. All entities participating in the
network will be able to read and write data transactions in ċnearČ real time. Itĉs not real time due
to the consensus mechanism taking time to bring the network into ċconsensus,Č but it can be
fairly quick. Itĉs certainly significantly quicker than running an ETL process at the end of the day
or on some time interval.

Case Study
 Blockchain in Hyperledger

4?FŁǮğĞĞŘĜęĘŘĞĞĝĠ
;MENB?N?;GƄE?SBIF?MI@NQ;L?Ł=IG
BNNJMŃŶŶE?SBIF?MI@NQ;L?Ł=IG

Reference Blockchain Use Case Example

Potential blockchain use cases are far reaching across many industries and domains. We chose a
case domain example that most people want positive management of, the flu.

Each year Influenza begins in the Southern Hemisphere and migrates around the world to the
United States mutating along the way. The CDC makes educated guesses as to which strain will be
the most virulent for which to create vaccines. When the flu season makes its way to the United
States, the CDC and state-level agencies track its progress by medical practitioner reports and

Management of the Flu

monitoring search engines for
folks searching for the flu.

Imagine that a blockchain exists
and the CDC, State Health and
Human Services, medical
practitioners, and testing labs are
all participating as Peer Nodes in
that blockchain.

Here is a diagram of the
blockchain and an accessing
React/Node client application:

This is the Hyperledger-based
blockchain that we have
implemented here at Keyhole
Software.

Each participant starts up a Peer Node. Hyperledger provides a Docker-based container to start
up a Peer. The Peer requires cryptographic keys, certificates, and for Hyperledger to provide a
utility to generate these. A Certificate Authority is also required to authorize these certificates
in the network, again this is provided by the framework.

Once started, a Channel can be created, which is a ledger. Then the Smart Contract (ċchaincodeČ
in Fabric speak) can be installed and instantiated on selected Peers that are designated as
Endorsing Peers.

Case Study
 Blockchain in Hyperledger

4?FŁǮğĞĞŘĜęĘŘĞĞĝĠ
;MENB?N?;GƄE?SBIF?MI@NQ;L?Ł=IG
BNNJMŃŶŶE?SBIF?MI@NQ;L?Ł=IG

// Define the LabResult.

//Structure tags are used by encoding/json library

type LabResult struct {

 Gender string `json:"gender"`

 DOB string `json:"dob"`

 City string `json:"city"`

 State string `json:"state"`

 TestType string `json:"testtype"`

 Result string `json:result"`

 DateTime string `json:datetime"`

}

…

Chaincode is the application logic of blockchain and is implemented in Go. Itĉs a single module
defined in a single file that is compiled into a binary. It is then installed on a Hyperledger Peer
Node.

Go is a statically-typed, compiled language. Since Hyperledger Peers are implemented with
Go, they have facilities to execute Go chaincode binaries. In addition, Hyperledger also
supports JavaScript and Java-based chaincode modules which greatly increases the potential

Chaincode (i.e. Smart Contracts)

Notice that Go has
built-in JSON
serialization
capabilities.

The invoke function is
the chaincode entry
point when a
transaction is invoked.
To the left is the
invoke method
implementation.

/*

* Invoke Smartcontract with arguments

*/

func (s *SmartContract) Invoke(APIstub shim.ChaincodeStubInterface) sc.Response {

 // Retrieve the requested Smart Contract function and arguments

 function, args := APIstub.GetFunctionAndParameters()

 // Route to the appropriate handler function to interact with the ledger appropriately

 if function == "initLedger" {

 return s.initLedger(APIstub)

 } else if function == "queryAllLabs" {

 return s.queryAllEntries(APIstub)

 } else if function == "queryStateResults" {

 return s.queryStateResults(APIstub, args[0])

 } else if function == "createLab" {

 return s.createLab(APIstub, args)

 }

 fmt.Println("args ", args)

 return shim.Error("Invalid Smart Contract function name.")

}

for developer and team adoption.

For our example, the Influenza chaincode
function is defined in a Labs.go file. A
Fabric stub interface provides an API to
put and get data from the blockchain
global data store. The Go data model
structure stored in the blockchain is
shown to the right.

Case Study
 Blockchain in Hyperledger

4?FŁǮğĞĞŘĜęĘŘĞĞĝĠ
;MENB?N?;GƄE?SBIF?MI@NQ;L?Ł=IG
BNNJMŃŶŶE?SBIF?MI@NQ;L?Ł=IG

Lab results are appended to the blockchain by issuing the following command using the
Hyperledger CLI command shown below.

Installing & Executing

Integrating With a Web Application

cli peer chaincode invoke -o orderer.example.com:7050 -C mychannel -n lab -c '{"function":"createLab","Args":

["F","03/01/1995","Topeka","RI","Mouth Swab","100","2018:07:03:10:00"]}'

The createLab smart contract function is executed with arguments specifying an Influenza lab
result test. This invokes a transaction that the blockchain network will process and all nodes
will receive the new block.

Influenza lab results can be queried by invoking a query Smart Contract operation. This is also
invoked using the CLI with the following expression:

cli peer chaincode invoke -o orderer.example.com:7050 -C mychannel -n lab -c '{"function":"queryAllLabs","Args":[""]}’

Notice the queryAllLabs function is invoked with no arguments specified. This will return all
influenza results in the blockchain. Another query function can be invoked to return labs for a
specific state by invoking the queryStateResults and specifying the state abbreviation as an
argument. Complex and Compound query expressions can also be specified.

With the Influenza blockchain being
used by all parties, lab results will be
distributed throughout the network
applications. Blockchain users can
interact and process this real-time
data by creating client applications
that access a Peer Node.

As an example of a client application,
we use React for the user interface
with Node.js as an API layer. Node.js
uses the fabric-client.js module which
allows access to a blockchain Peer.

A map of the U.S. displaying positive
lab results can be rendered in a
browser. This is depicted to the right.

Case Study
 Blockchain in Hyperledger

4?FŁǮğĞĞŘĜęĘŘĞĞĝĠ
;MENB?N?;GƄE?SBIF?MI@NQ;L?Ł=IG
BNNJMŃŶŶE?SBIF?MI@NQ;L?Ł=IG

Hyperledger provides a Node.js module that allows a client to access and invoke chaincode on
a Peer Node as long as it has a valid digital certificate. Here is a Node.js example that invokes
the queryAllLabs Smart Contract to get results on behalf of the React.js user interface.

Integrating With a Web Application

…….

 return;

}).then(() => {

 var transaction_id = client.newTransactionID();

 console.log("Assigning transaction_id: ", transaction_id._transaction_id);

 const request = {

 chaincodeId: ‘lab’,

 txId: transaction_id,

 fcn: ‘queryAllLabs’,

 args: ['']

 };

 return channel.queryByChaincode(request);

}).then((query_responses) => {

…...

Lab tests can also be created and added to the blockchain using the fabric-client.js client. The
following snippet is executed when the React.js UI calls a Node.js API that then executes this
expression.

…….

 return;

}).then(() => {

 console.log("Make query");

 tx_id = client.newTransactionID();

 console.log("Assigning transaction_id: ", tx_id._transaction_id);

 // queryCar - requires 1 argument, ex: args: ['CAR4'],

 // queryAllCars - requires no arguments , ex: args: [''],

 console.log("labs" + JSON.stringify(lab));

 const request = {

 targets: targets,

 chaincodeId: ‘lab’,

 txId: tx_id,

 fcn: 'createLab',

 args: [lab.gender, lab.dob, lab.city, lab.state, lab.testType, lab.result, lab.dateTime]

 };

 return channel.sendTransactionProposal(request);

….

The fabric-client.js node module
provides an API to perform all the
functions of the CLI (i.e. create a
channel, install, and instantiate
chaincode).

The expression to the left is defined
in a Node.js server-side application
that is called from an API call will
return all test results as an array of
JSON objects.

