

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 3 of 68

Data Flow Diagram
When a customer dials a call center, their call can be routed to any agent in the
queue that is waiting for work. This process is usually managed through
desktop-based applications like Avaya Agent for Desktop (AAfD). The agent will
receive various pieces of information based on which application they’re using.

In the AAfD use case, the most important information they’ll receive is the phone
number the customer called in from, and the phone number customer called in to.
These two pieces of information need to make their way to the custom-developed
web-based application that the agent will use to document the call.

There is no direct way for a web-based application to become aware of these types of
desktop events. Legacy strategies for this approach (e.g., Adobe Flash or a Java
Applet as message brokers) have become deprecated due to security concerns, and
are not likely possible on modern web browsers. Therefore, the application will need
to use supported tools and libraries to enable this workflow.

Thankfully, most softphone applications allow for API calls to be made from the
agent’s instance of the software when an inbound call comes in. This allows for the
information to be piped to an application API, which can then leverage a
bi-directional message service, such as SignalR, to stream the data to the web-based
application.

The following is a diagram of how the data moves from the web-based softphone to
the SPA running in the user’s browser:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 4 of 68

Implementation
Step 1 - AAfD
The very first step in the whole process is to configure each agent’s AAfD installation
to do a “screen pop.” This will trigger the agent’s AAfD to make a call to our
application’s API when a call comes in. (It will also make a call to the application’s API
for when the call ends, which can also be helpful in some circumstances.) Ensuring
all end users’ AAfD is configured for a screen pop can be delegated to whichever IT
team takes care of application installations and configurations; therefore, this step of
the process is intentionally omitted from this tutorial.

Several parameters will be injected at run time in the GET API call that’s made by the
agent’s AAfD. Reviewing the list of parameters from Avaya, these are the most
important to this use case:

<m> to pass the telephone number of the other party on the call
<p> to pass the digits (prompted digits) the caller selects while dialing VDN
<v> to pass the VDN name through which the call connects
<s> to pass the time when the user or agent accepts the call
<e> to pass the time when the user or agent ends the call
<d> to pass the current date when the agent receives the call
<a> to pass the current agent ID
<i> to pass the current station ID

It is not very obvious from the AAfD documentation how to actually use these
properties when setting up the screen pop. After some experimentation, we figured
out that AAfD offers two fields to set up the screen pop: one for an API to call, and
another for the parameters. A possible configuration of a screen pop looks like the
following:

URL: https://yourcompany.com/Integration/API/avayaAgentForDesktop/CallReceived
Params: n=<n>&m=<m>&p=<p>&v=<v>&u=<u>&s=<s>&e=<e>&d=<d>&a=<a>&i=<i>

This will produce the following API call when the AAfD agent receives a call:

https://yourcompany.com/Integration/API/avayaAgentForDesktop/CallReceived?n=555
5008709&m=5555008709&p=4&v=HH%20Other&u=&s=1611866452&e=1611866452&d=1611866454
&a=182965&i=3115

Which, when broken down means:

● Name of the caller = 5555008709
● Number of the caller = 5555008709
● Digit(s) the caller entered when prompted = 4
● VDN (name of the "campaign" vanity number) = HH Other
● Communication Manager collected info = (blank)
● Time when agent accepted call = 1611866452 (Jan 28th, 2021 at 2:40 PM

Eastern)
● Time when agent ended call = 1611866452 (Jan 28th, 2021 at 2:40 PM Eastern)
● Time when agent received call = 1611866452 (Jan 28th, 2021 at 2:40 PM Eastern)

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 5 of 68

https://documentation.avaya.com/es-XL/bundle/Planning_Administering_Avaya_IX_Workplace_Client_Android_iOS_Mac_Windows/page/Screen_pop.html

● Id of the agent = 182965
● Id of the station = 3115

There is a limited amount of configuration available by AAfD for the screen pop.
There doesn’t seem to be a way to switch it from a GET to a POST or to include
anything in the headers of the request.

The implication of the former is the name and number of the caller would be
considered PII, and likely get logged as plaintext in the logs of the application server.
The latter means that there needs to be something included on the query string to
authorize the call made by AAfD as being legitimate. Both architectural
considerations need to be weighed and accounted for in any implementation in an
enterprise environment.

Step 2 – Integration Engine API
The hypothetical API in the previous step began with:

https://yourcompany.com/Integration/API/

This was to distinguish this API from the one used by the application itself. The only
purpose of this API is to act as a gateway for code outside of the application to
integrate with the application.

Having a completely separate codebase for API calls coming in from outside
of the application allows for a greater degree of flexibility and deployment
cadence with changes to the integrations. It is a common pattern employed
by Healthcare IT, and it’s useful for use cases in other industries.

The job of this particular API endpoint is to take the request, forward the message to
an Event Hub, and then respond to the client that the request has been received and
processed successfully. The API, though, should live within an ASP.NET Core solution,
so one will be created:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 6 of 68

https://yourcompany.com/Integration/API/

After cleanup, create a new API controller for the AAfD endpoint:

Then, fill out the structure of the parameters sent by the AAfD screen pop call to
ensure the parameters are well named. A default value of the empty string is used to
accommodate when the AAfD screen pop passes nothing for a given parameter.
Note that when a parameter is not filled in on Swagger, it tries to be helpful and not
pass that parameter, which triggers a model state validation failure.

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 9 of 68

Interlude 2A – Setting up the Azure Container Registry and
Azure Web App via Terraform
With a simple written API, the next step is deploying it to Azure and testing it out in a
development environment. This implies that the Azure Container Registry exists to
push into the custom Docker image, and an Azure Web App exists that will run the
Docker container from the Container Registry.

One way to set these two resources up is to provision them manually from the Azure
Portal. This approach is not saleable, especially considering all of the other resources
that will eventually need to be provisioned (e.g., Azure SignalR Service, Azure Event
Hub, etc.), and multiplied by the number of environments that this topology will live
in. Modern cloud-native applications leverage IaC (usually “Infrastructure as Code,”
though sometimes “Infrastructure as Configuration”) tools to describe in a standard
and readable format what the topology of the resources that comprise an
application environment should look like.

There are many tools in this space to choose from. Each cloud vendor typically has its
own CLI, tools, and APIs that can be scripted together to achieve the desired effect.
The most popular tool in this area is Terraform, which is why it was chosen to
demonstrate deploying the Azure resources for this tutorial.

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 10 of 68

Note that the following steps assume the existence of an Azure Tenancy, as well as
the creation of an Azure Subscription that the resources will be deployed into.

The first step to using Terraform is downloading it from the HashiCorp website. Then,
following the Azure Getting Started tutorial, run PowerShell as an administrator and
execute:

Invoke-WebRequest -Uri https://aka.ms/installazurecliwindows -OutFile
.\AzureCLI.msi; Start-Process msiexec.exe -Wait -ArgumentList '/I AzureCLI.msi
/quiet'; rm .\AzureCLI.msi

That will install the Azure CLI onto the local machine. Next, you close PowerShell and
open up a command prompt, then run the following to authenticate with Azure AD:

az login

The response will be something to the effect of:

[
{

"cloudName": "AzureCloud",
"homeTenantId": "3fbef3f1-5db1-4829-b968-850575dc2a1b",
"id": "52953db3-9eb9-4a28-a059-19754fc86dc1",
"isDefault": true,
"managedByTenants": [],
"name": "Mockola",
"state": "Enabled",
"tenantId": "3fbef3f1-5db1-4829-b968-850575dc2a1b",
"user": {

"name": "zgardner@keyholesoftware.com",
"type": "user"

}
}

]

Then run the following command to ensure that subsequent commands to provision
the environment are invoked on the correct subscription. Note that the subscription
ID that should be used is dependent upon the return from the login command.

az account set --subscription "52953db3-9eb9-4a28-a059-19754fc86dc1"

With authentication complete and the subscription set, the next step is to provision
a Service Principal that will be used to perform actions on behalf of the user actually
running Terraform. The following command demonstrates how to provision the
Service Principal:

az ad sp create-for-rbac --role="Contributor"
--scopes="/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1"

The response is a JSON object that includes three important properties: appID,
password, and tenant. Now open PowerShell back up and set the four environmental
variables that will be used by the Terraform scripts to authenticate with Azure AD to
provision the topology:

$Env:ARM_CLIENT_ID = "<APPID_VALUE>"

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 11 of 68

https://www.terraform.io/downloads
https://learn.hashicorp.com/tutorials/terraform/azure-build?in=terraform/azure-get-started

terraform {
required_providers {

azurerm = {
source = "hashicorp/azurerm"
version = "~> 3.0.2"

}
}

required_version = ">= 1.1.0"
}

provider "azurerm" {
features {}

}

resource "azurerm_resource_group" "rg" {
name = "aafdSignalRDEV"
location = "centralus"

}
Then, initialize Terraform in the directory that contains that file:
$ terraform init

Initializing the backend...

Initializing provider plugins...
- Finding hashicorp/azurerm versions matching "~> 3.0.2"...
- Installing hashicorp/azurerm v3.0.2...
- Installed hashicorp/azurerm v3.0.2 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. All Terraform commands
should now work.
If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

As a best practice, always run the command to have Terraform format the
configuration files, then validate the file. This is demonstrated below.

$ terraform fmt
$ terraform validate
Success! The configuration is valid.

Next, run the command for Terraform to output what it’s planning to do if the
current configuration file is applied:

$ terraform plan

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the

following symbols:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 13 of 68

+ create

Terraform will perform the following actions:

azurerm_resource_group.rg will be created
+ resource "azurerm_resource_group" "rg" {

+ id = (known after apply)
+ location = "centralus"
+ name = "aafdSignalRDEV"

}

Plan: 1 to add, 0 to change, 0 to destroy.

Running a plan before an apply is a helpful sanity check to ensure there are
no surprises when the topology changes take effect. Additionally, including
the -out parameter allows for the planned changes to be captured and used
as the input to the apply stage.

This is helpful if there are multiple DevSecOps engineers, or even CI/CD pipelines,
that can manage the topology of the cloud resources simultaneously. The parallel
concept to this in software development is an assert(), where if the expectations
going into the change are different than the current state, it can immediately fail
rather than make an undesirable change.

Then run the apply stage to build out the resources as desired:

$ terraform apply
Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the
following symbols:

+ create
Terraform will perform the following actions:
azurerm_resource_group.rg will be created
+ resource "azurerm_resource_group" "rg" {

+ id = (known after apply)
+ location = "centralus"
+ name = "aafdSignalRDEV"

}

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

azurerm_resource_group.rg: Creating...
azurerm_resource_group.rg: Creation complete after 0s
[id=/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1/resourceGroups/aafdSign
alRDEV]
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Double checking the Azure Portal, the Resource Group was created successfully:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 14 of 68

The next step is to add in the Azure Container Registry that the Docker image will be
pushed into:

resource "azurerm_container_registry" "acr" {
name = "aafdSignalRDEVContainerRegistry"
resource_group_name = azurerm_resource_group.rg.name
location = azurerm_resource_group.rg.location
sku = "Standard"
admin_enabled = false

}

Then, it can be applied:

azurerm_resource_group.rg: Refreshing state...
[id=/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1/resourceGroups/aafdSign
alRDEV]

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the

following symbols:

+ create
Terraform will perform the following actions:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 15 of 68

azurerm_container_registry.acr will be created
+ resource "azurerm_container_registry" "acr" {

+ admin_enabled = false
+ admin_password = (sensitive value)
+ admin_username = (known after apply)
+ encryption = (known after apply)
+ export_policy_enabled = true
+ id = (known after apply)
+ location = "centralus"
+ login_server = (known after apply)
+ name = "aafdSignalRDEVContainerRegistry"
+ network_rule_bypass_option = "AzureServices"
+ network_rule_set = (known after apply)
+ public_network_access_enabled = true
+ resource_group_name = "aafdSignalRDEV"
+ retention_policy = (known after apply)
+ sku = "Standard"
+ trust_policy = (known after apply)
+ zone_redundancy_enabled = false

}

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

azurerm_container_registry.acr: Creating...
azurerm_container_registry.acr: Still creating... [10s elapsed]
azurerm_container_registry.acr: Creation complete after 14s
[id=/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1/resourceGroups/aafdSign
alRDEV/providers/Microsoft.ContainerRegistry/registries/aafdSignalRDEVContainer
Registry]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Next, validated on the Azure Portal:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 16 of 68

Interlude 2B – Pushing the Docker image to the Azure
Container Registry via GitHub Actions
The source code for the API could be hosted on Github, Azure DevOps, or any other
popular code versioning system. GitHub and Azure DevOps are both owned by
Microsoft, so they are the path of the least resistance. Deployment from Azure
DevOps is more mature than GitHub Actions, though the GitHub team is making
strides constantly to have Azure integration be a first-class feature.

Following the documentation from Microsoft, and after the Container Registry is
provisioned, the next step is to create the Service Principal that GitHub Actions will
use to do the deployment on behalf of the executing user.

From an architectural perspective, it’s possible to reuse the same Service Principle as
what was provisioned for Terraform. Each integration would ideally be its own client
ID/secret, which allows for isolated decommissioning if the credentials are exposed.
There is always an operational overhead to managing a multitude of App
Registrations if this methodology is employed at scale.

There is no one size fits all recommendation that can be made in an tutorial
like this which will serve all use cases. The needs of each organization are
different, so the only recommendation that can be made effectively at this
point is to think through how this need will scale at an organization and
work backward from there.

The command to provision the Service Principal is the same as before, with the
addition of the --sdk-auth argument. Note that this argument is being deprecated

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 17 of 68

https://docs.microsoft.com/en-us/azure/container-instances/container-instances-github-action

and will be removed in the future, so the guidance provided in this tutorial is as of its
writing.

az ad sp create-for-rbac --role="Contributor"
--scopes="/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1" --sdk-auth

A more saleable approach, if the decision is made to provision a new Service
Principal per Resource Group, is to have Terraform manage the creation of the
Service Principal. This involves adding in the azuread Terraform provider, then the
resource for the App Registration, then providing the “AcrPush” role for the Container
Registry to the Principal. This can all be done via the Azure CLI, though at scale it is
more effective to have the topology configuration described via a tool like Terraform.

For the sake of this tutorial, it will assume that the CLI-created Service Principal will
be the one to use. Pulling that into the Terraform script is done in two steps: adding a
data section to make Terraform aware of which Service Principal we should use, then
provisioning the Service Principal to have the ability to push to the Container
Registry.

data "azuread_service_principal" "github_actions" {
application_id = "20481032-be75-4a10-860f-4790b7041acf"

}
resource "azurerm_role_assignment" "acr_sa" {

scope = azurerm_container_registry.acr.id
role_definition_name = "AcrPush"
principal_id = data.azuread_service_principal.github_actions.id

}

After running that through the Terraform plan:

Terraform used the selected providers to generate the following execution plan.
Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

azurerm_role_assignment.acr_sa will be created
+ resource "azurerm_role_assignment" "acr_sa" {

+ id = (known after apply)
+ name = (known after apply)

+ principal_id =
"812986b6-da93-4c7c-9bfe-7509d3d2a249"

+ principal_type = (known after apply)
+ role_definition_id = (known after apply)
+ role_definition_name = "AcrPush"

+ scope =
"/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1/resourceGroups/aafdSignalR
DEV/providers/Microsoft.ContainerRegistry/registries/aafdSignalRDEVContainerReg
istry"

+ skip_service_principal_aad_check = (known after apply)
}

Plan: 1 to add, 0 to change, 0 to destroy.

Then the change was successfully applied:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 18 of 68

Then its REGISTRY_USERNAME (clientId in the AZURE_CREDENTIALS) and
REGISTRY_PASSWORD (clientSecret from the AZURE_CREDENTIALS). The final secret
is RESOURCE_GROUP, which is aafdSignalRDEV.

The creation of the GitHub Action is next up. Click on Actions, then click on the link to
set up a new workflow.

Copy in the workflow from the Microsoft documentation, then commit the .yml file.
The new workflow is then automatically kicked off:

If everything was configured correctly when the job is finished, the status will be
green:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 20 of 68

https://docs.microsoft.com/en-us/azure/container-instances/container-instances-github-action#create-workflow-file

And it will show up in the Azure Container Registry:

The GitHub Action configuration provided in the Microsoft documentation pushes
up an image named “sampleapp” whose tag seems to be the SHA1 of the commit.
This isn’t ideal for our Azure Web App to run the container since (A) the name of the
image should correspond to what it actually is, and (B) the tag that the Web App
picks up needs to be constant across builds. Back to the GitHub Action, the name of
the image needs to change, and “latest” will be the tag it always pushes out.

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 21 of 68

From a DevSecOps standpoint, it might be beneficial to keep the tags with the SHA1
to allow for greater visibility into what got pushed and when. For the purposes of this
tutorial, “latest” is all that’s needed. This is a fairly straightforward change in the
build.yml file:

After the build, the new image is available on the Container Registry:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 22 of 68

Interlude 2C – Creation of the Azure Web App
Now that the Container Registry contains the desired image, the Web App can be
set up to run as the orchestrator of that running Docker container. This will be done
by adding a few more sections to the Terraform configuration file.

It’s important to note that most tutorials recommend putting the client ID
and secret of the Container Registry in plaintext in the Terraform file. While
this is the path of least resistance, it is not a secure implementation for real
use cases and should be avoided in real-world scenarios.

This is especially in light of the recently disclosed hack of Uber, where one of the
attack vectors the malicious actor leveraged was security credentials that were
stored in plain text.)

It is unfortunate that Azure Web Apps still require an application setting to pull
images from the Azure Container Registry, whereas doing it through Managed
Identity would be much more secure. It’s consequentially necessary to enable admin
on the Container Registry, then in the Terraform script, use the variables provided by
it as the input to the username/password variables for the Web App.

The tier for the App Service Plan is also important, as it can dictate some of the
essential security features available to the application. For example, network-level
security (i.e., VNet integration with an NSG) is offered only in the Premium tier of the
application. Although it costs more than the Dev/Test tier, if dev/test parity (tenant 10
of the 12-factor app) is a requirement, then the cost must be built into the operating
model for the application and all of its environments.

Further, it’s best practice to have the application’s secrets in a Key Vault, then
pulled in at the run time by the Web App via its managed identity. This
allows for a higher degree of control over which groups have access to the
secret values in the Key Vault, versus which groups have access to resources
that pull in the secrets but cannot see the value. It’s also important for a Web
App to have visibility into the logs produced by the application, so an App
Insights instance will be set up alongside the Web App.

All of the requirements above produce a Terraform configuration like the following:

// Create the App Insights for the Integration Engine Web App
resource "azurerm_application_insights" "integrationengine_ai" {
 name = "aafdSignalRDEVIntegrationEngineAI"
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
 application_type = "web"
}

// Create the Key Vault to store secrets for the Integration Engine Web App

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 24 of 68

https://12factor.net/dev-prod-parity
https://12factor.net/dev-prod-parity

resource "azurerm_key_vault" "integrationengine_kv" {
 name = "aafdSignalRDEVIEKV004"
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
 tenant_id = data.azurerm_client_config.current.tenant_id
 sku_name = "premium"

 access_policy {
 object_id = data.azuread_client_config.current.object_id
 tenant_id = data.azurerm_client_config.current.tenant_id

 secret_permissions = [
 "Get", "List", "Set"
]
 }
}

// Then provision the secrets for the Integration Engine Key Vault
resource "azurerm_key_vault_secret"
"integrationengine_docker_registry_server_url" {
 name = "DOCKER-REGISTRY-SERVER-URL"
 value =
"https://${azurerm_container_registry.acr.login_server}"
 key_vault_id = azurerm_key_vault.integrationengine_kv.id
}

resource "azurerm_key_vault_secret"
"integrationengine_docker_registry_server_username" {
 name = "DOCKER-REGISTRY-SERVER-USERNAME"
 value = azurerm_container_registry.acr.admin_username
 key_vault_id = azurerm_key_vault.integrationengine_kv.id
}

resource "azurerm_key_vault_secret"
"integrationengine_docker_registry_server_password" {
 name = "DOCKER-REGISTRY-SERVER-PASSWORD"
 value = azurerm_container_registry.acr.admin_password
 key_vault_id = azurerm_key_vault.integrationengine_kv.id
}

// Include the legacy APPINSIGHTS_INSTRUMENTATIONKEY
resource "azurerm_key_vault_secret"
"integrationengine_appinsights_instrumentationkey" {
 name = "APPINSIGHTS-INSTRUMENTATIONKEY"
 value =
azurerm_application_insights.integrationengine_ai.instrumentation_key
 key_vault_id = azurerm_key_vault.integrationengine_kv.id
}

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 25 of 68

// As well as the newer APPLICATIONINSIGHTS_CONNECTION_STRING
resource "azurerm_key_vault_secret"
"integrationengine_applicationinsights_connection_string" {
 name = "APPLICATIONINSIGHTS-CONNECTION-STRING"
 value =
azurerm_application_insights.integrationengine_ai.connection_string
 key_vault_id = azurerm_key_vault.integrationengine_kv.id
}

// Create the App Service Plan for the Integration Engine Web App
resource "azurerm_service_plan" "integrationengine_asp" {
 name = "aafdSignalRDEVIntegrationEngineASP"
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
 os_type = "Linux"
 sku_name = "P1v2"
}

resource "azurerm_linux_web_app" "integrationengine_api" {
 name = "aafdSignalRDEVIntegrationEngineAPI"
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name
 service_plan_id = azurerm_service_plan.integrationengine_asp.id

 identity {
 type = "SystemAssigned"
 }

 site_config {
 always_on = "true"
 health_check_path = "/health"

 application_stack {
 docker_image =
"${azurerm_container_registry.acr.login_server}/aafd-signalr-integrationengine-ap
i"
 docker_image_tag = "latest"
 }
 }

 app_settings = {
 "DOCKER_REGISTRY_SERVER_URL" =
"@Microsoft.KeyVault(SecretUri=${azurerm_key_vault_secret.integrationengine_docke
r_registry_server_url.versionless_id})"
 "DOCKER_REGISTRY_SERVER_USERNAME" =
"@Microsoft.KeyVault(SecretUri=${azurerm_key_vault_secret.integrationengine_docke
r_registry_server_username.versionless_id})"

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 26 of 68

azurerm_key_vault_secret.integrationengine_docker_registry_server_password:
Creation complete after 1s
[id=https://aafdsignalrdeviekv004.vault.azure.net/secrets/DOCKER-REGISTRY-SERVE
R-PASSWORD/3198ccb43bf34c3e8cc28109e2fad333]

azurerm_linux_web_app.integrationengine_api: Creating...

azurerm_role_assignment.acr_sa: Still creating... [10s elapsed]

azurerm_linux_web_app.integrationengine_api: Still creating... [10s elapsed]

azurerm_role_assignment.acr_sa: Still creating... [20s elapsed]

azurerm_linux_web_app.integrationengine_api: Still creating... [21s elapsed]

azurerm_role_assignment.acr_sa: Creation complete after 23s
[id=/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1/resourceGroups/aafdSign
alRDEV004/providers/Microsoft.ContainerRegistry/registries/aafdSignalRDEVContai
nerRegistry/providers/Microsoft.Authorization/roleAssignments/0f975b0e-4174-21c
8-bc1e-f0ac6daf861b]

azurerm_linux_web_app.integrationengine_api: Creation complete after 30s
[id=/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1/resourceGroups/aafdSign
alRDEV004/providers/Microsoft.Web/sites/aafdSignalRDEVIntegrationEngineAPI]

azurerm_key_vault_access_policy.keyvault_policy: Creating...

azurerm_key_vault_access_policy.keyvault_policy: Creation complete after 9s
[id=/subscriptions/52953db3-9eb9-4a28-a059-19754fc86dc1/resourceGroups/aafdSign
alRDEV004/providers/Microsoft.KeyVault/vaults/aafdSignalRDEVIEKV004/objectId/0e
bb6d25-232a-4f07-9a01-f689c54ba786]

Everything from the Terraform output looks good, and on the Azure Portal:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 28 of 68

The Key Vault reference for those configurations is pulling through correctly, so the
access control at the very bottom is working.

This, unfortunately, did not work:

And interestingly enough, there are no results in App Insights:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 29 of 68

One of the most effective ways to triage this is to go to the Web App’s Development
Tools -> Advanced Tools:

Then go to the Log Stream:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 30 of 68

This makes sense because the Container Registry was deleted as part of the testing
of this Terraform script, and the GitHub Action has not been invoked to publish it
there. It makes sense that Terraform did not fail the portion of the step to generate
the WebApp, because it likely isn’t able to tell at run time if the image was
successfully pulled. But, after rerunning the Action:

The Docker Image is now available in the Container Registry:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 32 of 68

So the Web App can be stopped and started to trigger it to pull the most recent
version of the Docker image with that tag from the Container Registry:

The logs show a positive result, so testing out the deployed Swagger page:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 33 of 68

Interestingly enough, the same URL path that works when running the solution in
Visual Studio did not work out of the box in this setup.

This is because the Program.cs that was generated when the solution was initialized
only enables Swagger when running in DEBUG. A RELEASE build, which runs on the
GitHub Actions side, will trigger this block to be skipped over:

This is ideal for some scenarios, but not for this tutorial’s use case. After changing
Swagger to always be included, even in a RELEASE build:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 34 of 68

This triggered the GitHub Action:

But the URL still has a 404. Cross-referencing the WebApp’s logs, it hasn’t pulled in
the latest image from the Registry. The most recent logs in the Deployment Center
have not changed since the image was pulled in, to begin with.

Stopping and Starting does trigger the WebApp to pull in the additional actions:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 35 of 68

This means that the GitHub Action needs to include a new step that will stop and
then start the Web App. Unfortunately, at the time of authoring this tutorial, there is
not a native GitHub Action that will trigger a Web App to restart. It is possible though
to use an Azure CLI Action to do the work. Hopefully, in the years to come, the
amount of native, first-class integrations that Azure DevOps has with resources on
Azure will become available on GitHub Actions.

Adding these actions to the GitHub Action was straightforward, as it already required
logging in to the Azure CLI for the previous steps:

- name: 'Stop WebApp'
uses: Azure/cli@v1
with:

inlineScript: az webapp stop --name aafdSignalRDEVIntegrationEngineAPI
--resource-group aafdSignalRDEV004

- name: 'Start WebApp'
uses: Azure/cli@v1
with:

inlineScript: az webapp start --name aafdSignalRDEVIntegrationEngineAPI
--resource-group aafdSignalRDEV004

And tail-ing the logs on the Web App confirms that this triggers the new image to be
pulled in:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 36 of 68

Step 3 – Azure SignalR Service
The next major step of this architectural setup is to provision the SignalR service.
SignalR allows for bi-directional communication between disparate clients. In the
scenario this tutorial sets out to solve, the React UI will be the receiver of the
communication, and the Integration Engine will be the broadcaster of the message.

One major consideration when provisioning SignalR is scale. The traditional
type of scale, as in how many concurrent connections will be made to the
service, is somewhat straightforward to project out. The UI, during its
bootstrap, will make a connection to the SignalR hub with information about
the user that is connecting to it and will receive the WebSocket (or JSONP
fallback) connection.

Many different types of messages can be broadcast on this channel, either directed
at the specific user or at a group that the UI joins. An architectural decision needs to
be made for how many discrete connections an instance of the UI will obtain. If there
is one connection per type of message, this makes the message communication
very isolated but is not a saleable option as the types of messages grow.

An implementation that limits the UI to one connection per instance, with 10
concurrent instances is able to scale at the same rate as, hypothetically, a UI with 10
different types of messages that have one instance running. The decision as part of
the implementation in this tutorial is to have one SignalR connection per instance of
the UI, which will have implications on how the UI is configured later in this post.

The other type of scale to consider is the number of SignalR instances that will be
provisioned. In an on-prem deployment, it is recommended to have more than one
instance of SignalR, deployed to more than one server. This allows for HA if a single
node or two goes down, features in the application that rely on SignalR can still
function. A backplane is needed so that, no matter which instance of SignalR the
message producer is connected to, it knows how to route the message to the
SignalR instance that the message consumer is currently connected to. This
requirement is thankfully abstracted with the Azure SignalR Service, as it is a
managed instance that can horizontally scale without direct intervention from the
DevSecOps team of the application. The configuration that the UI developers need to
account for is also simplified as the Azure SignalR Service is available via a single URL,
in essence, a reverse proxy to potentially a cluster of SignalR services under the
covers.

That said, additional configuration needs to be added to the Terraform topology to
provision the Azure SignalR Service. The first major decision to make is the tier, which
affects the maximum number of connections, messages/day, availability, etc. Note
that the estimated prices on this screenshot represent the EA (Enterprise
Agreement) between Keyhole Software and Microsoft, which may be different for
different organizations:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 38 of 68

With a maximum of 10 units, a Premium tier SignalR Service can allow for up to 100k
connections:

This is more than sufficient for most use cases. If, however, 100k simultaneous
connections or 100 million messages/day does not cover the application’s use case, it
is necessary to provision multiple instances of the Azure SignalR Service. This has the

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 39 of 68

development overhead of needing to account for more than one instance of SignalR,
where the actors on either side of the WebSocket connection may be on different
instances. A Redis Backplane is a native SignalR approach to solving this issue and is
recommended ahead of writing a bespoke router to ensure the correct SignalR
instance is used.

For the purposes of this tutorial, the Free tier is more than sufficient. The next
decision to make is the Service Mode. The documentation from Microsoft on this
goes into detail on what the options of Default, Serverless, and Classic actually entail.
For most modern applications, the Default option is the one that should be selected.

The last major consideration in the provisioning of the SignalR Service is networking.
Azure allows for the SignalR Service to be accessible on a public endpoint as well as a
private endpoint. A private endpoint is useful if the rest of the application is on a
VNet, and access to the SignalR hub needs to be restricted at a network level as well
as at an application level. In this tutorial, a private endpoint is not needed, thus the
public endpoint option will be used.

Converting these requirements into Terraform configuration produces something to
the effect of:

// Create the SignalR Service that will be used by the UI and Integration Engine
resource "azurerm_signalr_service" "hub" {
 name = "aafdSignalRDEVSignalRHub"
 location = azurerm_resource_group.rg.location
 resource_group_name = azurerm_resource_group.rg.name

 sku {
 name = "Free_F1"
 capacity = 1
 }

 service_mode = "Default"
}

The Terraform script successfully created the resource:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 40 of 68

https://docs.microsoft.com/en-us/azure/azure-signalr/concept-service-mode

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 41 of 68

Step 4 – Application API and SignalR Hub
With the SignalR Service created, the Integration Engine and UI need a way to
connect to it. Those connections need to be authorized to prevent any malicious
actors from listening to the message being broadcast as well as broadcasting
messages themselves. This can be done by implementing the application’s API, then
creating a SignalR Hub inside of it, which is connected to the SignalR Service that
was created in the previous step.

Creating the application’s API can be done through a new ASP.NET Core API project:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 42 of 68

After creation and some cleanup, the next step is to configure authentication and
authorization.

It is always preferable to leverage a supported and well-tested library to
implement authentication and authorization instead of attempting to write
a bespoke security layer.

To that end, the libraries used in this tutorial will be ones published by Microsoft to
NuGet for the API and NPM for the UI. The MSAL SDK will be used to implement
security in this application. This will manifest as an OAuth2 flow for end users, while
the Integration Engine will be able to use its Managed Identity to request a security
token.

Another security constraint is that not all users that are authenticated by Azure
Active Directory should be able to access this application. Only users that are
authenticated to the Keyhole Software Azure Tenancy should be able to access the
application.

Interlude 4A – Creation of the UI with MSAL
Although the Application API has not been fully completed, it is easiest to build this
setup piece by piece.

Having a working UI that leverages MSAL allows the development team to
prove that the desired setup is working correctly prior to pushing it up to a
development environment in Azure.

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 43 of 68

https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview

Creating a new React UI is as simple as running the following:

$ npm install -g create-react-app
$ npx create-react-app aafd-signalr-application-ui

This produces a React application with all of the essentials built out:

The UI application can be started by running the command:

$ npm run start

Compiled successfully!

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 44 of 68

https://docs.microsoft.com/en-us/azure/active-directory/develop/tutorial-v2-react

Then a new App Registration needs to be configured so that the MSAL running in
the browser is able to ask Azure Active Directory to authenticate the user, confirm
that the user is part of the Keyhole Software Azure Active Directory Tenancy, and
then get some basic information about the user (such as their email address). The
Terraform configuration for this flavor of App Registration is as follows:

// Create the App Registration that the UI will use to authenticate the user
resource "azuread_application" "ui-auth" {
 display_name = "aafd-signalr-application-ui-dev001"
 sign_in_audience = "AzureADMyOrg"
 owners = [data.azuread_client_config.current.object_id]

 single_page_application {
 redirect_uris = [
 "http://localhost:3000/"
]
 }

 optional_claims {
 id_token {
 name = "family_name"
 source = null
 essential = false
 additional_properties = []
 }

 id_token {
 name = "given_name"
 source = null
 essential = false
 additional_properties = []
 }
 }

 required_resource_access {
 resource_app_id = "00000003-0000-0000-c000-000000000000" # Microsoft Graph

 resource_access { // openid
 id = "e1fe6dd8-ba31-4d61-89e7-88639da4683d"
 type = "Scope"
 }

 resource_access { // profile
 id = "37f7f235-527c-4136-accd-4a02d197296e"
 type = "Scope"
 }

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 46 of 68

 resource_access { // email
 id = "64a6cdd6-aab1-4aaf-94b8-3cc8405e90d0"
 type = "Scope"
 }

 resource_access { // User.Read
 id = "14dad69e-099b-42c9-810b-d002981feec1"
 type = "Scope"
 }
 }

 web {
 implicit_grant {
 id_token_issuance_enabled = true
 }
 }
}

The AzureADMyOrg ensures that only users within Keyhole Software can authenticate
against it. The single_page_application redirect_uri is used for the MSAL on
the UI to pick up the user has been successfully authenticated, store the
authorization information in the Session Storage, close the popup, then update the
React state to indicate that the current user is now authenticated. The Graph API
scopes are to allow the UI to become aware of who the current user is, limited to
their name and email address.

With the App Registration completed, its client id can be used as input into the auth
configuration on the UI:

const msalConfigurationByHostname = {
 'localhost': {
 'clientId': '6cbc6789-c3f3-46d2-84fb-b03bb0558d9f',
 'redirectUri': 'http://localhost:3000/'
 }
}

const getClientId = () => {
 const hostnameMSALConfiguration =
msalConfigurationByHostname[document.location.hostname];

 if (!hostnameMSALConfiguration) {
 throw new Error('No mapping exists between hostname ' +
document.location.hostname + ' for client id');
 }

 return hostnameMSALConfiguration.clientId;
};

const getRedirectUri = () => {

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 47 of 68

 const hostnameMSALConfiguration =
msalConfigurationByHostname[document.location.hostname];

 if (!hostnameMSALConfiguration) {
 throw new Error('No mapping exists between hostname ' +
document.location.hostname + ' for redirect uri');
 }

 return hostnameMSALConfiguration.redirectUri;
};

export const msalConfig = {
 auth: {
 clientId: getClientId(),
 authority:
'https://login.microsoftonline.com/3fbef3f1-5db1-4829-b968-850575dc2a1b',
 redirectUri: getRedirectUri()
 },
 cache: {
 cacheLocation: 'sessionStorage',
 storeAuthStateInCookie: false
 }
};

export const loginRequest = {
 scopes: [
 'User.Read'
]
};

export const graphConfig = {
 graphMeEndpoint: 'https://graph.microsoft.com/v1.0/me'
};

Some of the configuration values in this application are consistent across application
environments. There are others, such as the app id for the App Registration, which
are specific to which environment the application is running in. The proposed
scenario for this application is that the UI is built once into a Docker image, then
deployed to DEV then the same image is promoted to higher environments. This
ensures that the codebase approved by the QA team is the same when it makes its
way to PROD.

An implication of this setup is that either (A) the UI needs to know which
environments it’s running on to provide MSAL with the correct configuration values
for that environment, or (B) the UI can call an API to provide it the values for that
environment. The decision in this tutorial is to go with option (A), where the UI will
need to check how it's being accessed by the browser, and derive the correct
environmental configurations from that.

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 48 of 68

It has the potential downside of needing a rebuild and redeploy if one of the
environmental configurations changes, with the advantage of having the
configuration be statically defined instead of needing to invoke an API to obtain it. In
a production scenario, option (B) may be preferable, especially if the UI needs to be
made aware of several environment-specific configurations.

In the application’s index.js file, bring in the MSAL dependencies as well as the
auth_n/auth_z configuration, and create the MSAL instance. Then use the instance
through the MSAL provider, which allows for child classes to become aware of the
current user’s authorization information:

Create the Login button:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 49 of 68

Once the user has accepted these permissions, subsequent logins will skip this
display.

The MSAL JS library then receives the authentication information, stores it into
session storage, close the popup, updates the React state, and displays the
authenticated message:

Leveraging the MSAL JS library, the UI can include the email address of the currently
logged-in user:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 51 of 68

Any additional claims that were requested during the authentication process are
also available in the accounts variable exposed by the hook.

Interlude 4B – Incorporating MSAL into the Application API
With the UI configured to use MSAL, next the Application API needs to be made
aware of MSAL authentication. Start by installing the Microsoft.Identity.Web
NuGet package. Then update the appsettings.Development.json with
information obtained from the App Registration:

Configure the Program.cs to expect the defaults from the MSAL library:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 52 of 68

Create a controller for testing purposes to ensure that it rejects the initial request
because the client is not authorized:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 53 of 68

In order to test out this API from the UI, install the Axios NPM package:

$ npm install axios

Update the application to have a state variable to keep track of the bearer token, and
pass the setter to the sign-in button:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 54 of 68

The sign-in button will then send the JWT to the setter, setting the default
Authorization header in Axios to that JWT by the effect.

A new button is created to send a sample AJAX request to the testing API:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 55 of 68

Unfortunately, the initial test of this API yields a HTTP 401 Unauthorized.

To determine why this is happening, increase the logging level in the
appsettings.Development.json to trace:

Then rerun the API call. The Output then shows the reason why the JWT was
rejected:

Microsoft.AspNetCore.Authentication.JwtBearer.JwtBearerHandler: Information:
Bearer was not authenticated. Failure message: IDW10201: Neither scope nor
roles claim was found in the bearer token. Authentication scheme used:
'Bearer'.

Back to the Terraform configuration, a new app role is needed to ensure that the
claim required by the C# MSAL condition is met. This can be added to the existing

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 56 of 68

Using the name claim to return from the test controller method:

The UI is then able to see the information from the user:

And the [Authorize] attribute is still working, returning a HTTP 401 Unauthorized
from Swagger when it does not have a bearer token present:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 58 of 68

Then in Program.cs, add it to the builder and map the hub:

è
builder.Services.AddSignalR();

var app = builder.Build();
è
app.MapHub<ApplicationHub>("/Application");

app.Run();

Security then needs to be implemented to ensure that only authorized
clients can access the hub.

The MSAL implementation used in this tutorial leverages JWT bearer tokens, so that
particular flavor of authorization needs to be incorporated into the SignalR setup
following the documentation from Microsoft. Unfortunately, this means adding in a
filter that scans the request to extract the token from the query string so it can be
added to the SignalR context:

builder.Services.AddAuthentication(options =>

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 60 of 68

https://learn.microsoft.com/en-us/aspnet/core/signalr/authn-and-authz?view=aspnetcore-6.0#built-in-jwt-authentication
https://learn.microsoft.com/en-us/aspnet/core/signalr/authn-and-authz?view=aspnetcore-6.0#built-in-jwt-authentication

Connect to SignalR once the bearer token has been obtained:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 62 of 68

Upon launching the application and authenticating, the SignalR JS library will
negotiate with the hub, including the bearer token in the Authorization header:

The server then responds with the connection id, as well as the protocols it supports

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 63 of 68

This setup also relies upon a bearer token being configured in the application’s
settings. When this is deployed to the Azure WebApp, this will come from the
Managed Identity. The lock is also used to prevent a race condition where multiple
threads are using this same class to establish the connection to the SignalR Hub.

The AAfD controller can then be updated to bring in that class, and pass the
message to the hub:

public class AvayaAgentForDesktopController : ControllerBase
{

private readonly ApplicationHub applicationHub;

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 65 of 68

public AvayaAgentForDesktopController(ApplicationHub applicationHub)
{

this.applicationHub = applicationHub;
}
è

public async Task<bool> CallReceived([FromQuery(Name = "n")] string
nameOfCaller = "",

[FromQuery(Name = "m")] string numberOfCaller = "",
[FromQuery(Name = "p")] string digitsEntered = "",
[FromQuery(Name = "v")] string vdnCampaignName = "",
[FromQuery(Name = "u")] string communicationManagerCollectedInfo = "",
[FromQuery(Name = "s")] string timeWhenAgentAcceptedCall = "",
[FromQuery(Name = "e")] string timeWhenAgentEndedCall = "",
[FromQuery(Name = "d")] string timeWhenAgentReceivedCall = "",
[FromQuery(Name = "a")] string agentId = "",
[FromQuery(Name = "i")] string stationId = "")

{
await applicationHub.SendMessageToUser(Guid.NewGuid(), new

Dictionary<string, string>()
{

{
"nameOfCaller",
nameOfCaller

},
{

"numberOfCaller",
numberOfCaller

},
{

"digitsEntered",
digitsEntered

},
{

"vdnCampaignName",
vdnCampaignName

},
{

"communicationManagerCollectedInfo",
communicationManagerCollectedInfo

},
{

"timeWhenAgentAcceptedCall",
timeWhenAgentAcceptedCall

},
{

"timeWhenAgentEndedCall",
timeWhenAgentEndedCall

},
{

"timeWhenAgentReceivedCall",
timeWhenAgentReceivedCall

},
{

"agentId",
agentId

},
{

"stationId",

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 66 of 68

stationId
}

});

The complexity of using AAfD is that there needs to be a lookup between
the agentId on the softphone with the user that is connecting to SignalR.
This is commonly done by having a property on the user record with their
agentId, obtained when the user is set up on the laptop/desktop provisioned
to them when AAfD is installed.

For the purposes of this tutorial, this setup will be simplified by providing the correct
GUID that corresponds to the React UI listening to this message.

After invoking that Controller method, the breakpoint gets hit on the SignalR Hub:

And when the SignalR Hub forwards the message to the specific UI connected by
that user id, the UI’s method to receive the message is invoked with the message:

© 2023 KeyholeSoftware.com | Expert Consulting. Knowledge Transfer.
Page 67 of 68

