
© 2024 KeyholeSoftware.com 1

http://keyholesoftware.com


COBOL Modernization
Strategy with Spring Batch
Introduction_________________________________________________________3
White Paper Background___________________________________________ 5
COBOL & Batch Processing___________________________________________5
Modern Challenges For COBOL The Enterprise_______________________ 6
COBOL Modernization Strategies___________________________________ 7
Code Generation_____________________________________________________7
Pros of Code Generation_____________________________________________ 7
Cons of Code Generation_____________________________________________ 7
Rewriting COBOL from Scratch______________________________________ 8
Pros of Rewriting from Scratch_______________________________________ 8
Cons of Rewriting from Scratch______________________________________ 8
Keyhole Advice______________________________________________________ 8
Modern Batch Processing___________________________________________9
Introduction to Spring Batch_________________________________________ 9
How Spring Batch Works____________________________________________ 10
Chunking Is The Key_________________________________________________ 11
The Rewrite Experience____________________________________________ 13

Rewrite Cost Savings Proposition_____________________________________________________ 13
AI Assistance Unleashed____________________________________________________________ 14

Example Generating Elements with ChatGPT or CoPilot________________________ 14
Generating an Entire Application_______________________________________________16

Key Team Roles and Responsibilities__________________________________________________ 19
Key Personnel____________________________________________________________________ 19

Spring Batch Developers_______________________________________________________19
Domain Analyst_______________________________________________________________ 19
Testers________________________________________________________________________ 20
Project Management / ScrumMaster__________________________________________ 20

Establishing a Test Environment_____________________________________________________ 20
Job Scheduling_______________________________________________________________________21

Conclusion_____________________________________________________________________________ 22

© 2024 KeyholeSoftware.com 2

http://keyholesoftware.com


Introduction
In the fast-paced landscape of modern technology, the longevity of
COBOL stands as a testament to its enduring relevance in enterprises
today. The transformation from legacy COBOL systems to contemporary
frameworks is a critical journey for enterprises aiming to enhance
efficiency, scalability, and maintainability.

This white paper focuses on COBOL modernization, specifically in batch
processing, proposing a strategy with Spring Batch. This paper provides a
comprehensive guide based on tangible experience for enterprises
navigating the realm of COBOLmodernization.

Key sections include:
The Legacy Challenge:
Fear of disrupting critical processes and the absence of a clear migration
path have led to the reluctance to remove legacy COBOL systems. We
explore two distinct approaches to COBOL modernization—code
generation and rewriting applications from scratch. This section sheds
light on the complexities associated with COBOL and sets the stage for
exploring how Spring Batch emerges as a compelling solution.

Introduction to Spring Batch:
Enter Spring Batch—an influential framework built atop the Spring
Framework. Widely adopted for its scalability, performance optimization,
and robust error-handling mechanisms, Spring Batch is a modern
alternative to COBOL. This paper explores the features that make Spring
Batch the preferred choice for batch processing applications, detailing
how it facilitates the automation of large-scale data processing tasks.

The Rewrite Experience:
Keyhole's expertise in modernizing COBOL batch implementations
highlights the importance of rewriting applications from scratch. While
seemingly time-consuming, it offers a chance to eliminate redundant

COBOL programs, optimize batch windows, and enhance system efficiency.

Leveraging AI Assistance:
Integrating advanced AI tools, such as ChatGPT or large language models (LLMs), emerges
as a transformative factor. This technology proves invaluable, accelerating the
modernization of legacy systems by simplifying complex tasks.

This white paper navigates through the intricacies of modern batch processing,
focusing on the paradigm-shifting capabilities of Spring Batch within the Java
ecosystem and its role in rewriting COBOL batch programs.

© 2024 KeyholeSoftware.com 3

http://keyholesoftware.com


© 2024 KeyholeSoftware.com 4

http://keyholesoftware.com


White Paper Background
COBOL & Batch Processing
COBOL stands for COmmon Business-Oriented Language. It was widely used for batch
processing in mainframe applications due to several reasons.

1. Firstly, COBOL was designed specifically for business applications, with a strong
focus on data processing and report generation. It provided a high-level
programming language that allowed programmers to write code that closely
resembled the natural English language, making it easier to read and understand.
This made COBOL a preferred choice for business-oriented applications, such as
those found in mainframes.

2. Secondly, mainframe systems were primarily used for large-scale, high-volume data
processing. COBOL offered excellent performance and efficiency in handling these
large datasets. It could efficiently process extensive amounts of data in batch mode,
where jobs are executed sequentially without user interaction. This made COBOL an
ideal language for mainframe batch processing applications, which often involved
processing massive amounts of data overnight or during off-peak hours.

3. Thirdly, COBOL had extensive support for file handling and data manipulation. In
batch processing applications, data is typically read from input files, processed, and
written to output files. COBOL's rich set of file-handling features made it easy to read
and write data to and from different file types, such as sequential files, indexed files,
and databases. This flexibility allowed COBOL programmers to create efficient and
streamlined batch processing applications.

4. Furthermore, the stability and reliability of COBOL played a crucial role in its
adoption for mainframe batch processing. Mainframe systems were known for their
robustness and uptime, and COBOL was well-suited to handle these critical
applications. COBOL programs were reliable and provided strong error-handling
capabilities, ensuring that batch jobs ran without interruptions and could recover
from errors gracefully.

5. Lastly, the extensive knowledge and experience in COBOL programming were also
contributing factors. During the time when mainframes and batch processing were
prevalent, COBOL was a widely taught and used language. Many programmers
and IT professionals were well-versed in COBOL, making it easier to find and
maintain a skilled workforce to develop and support mainframe batch processing
applications.

In summary, COBOL's suitability for business applications, performance, file handling
capabilities, reliability, and the availability of skilled programmers contributed to its
widespread use in mainframe batch processing applications. These factors made COBOL a
go-to language for building efficient and reliable data processing systems on mainframes.

© 2024 KeyholeSoftware.com 5

http://keyholesoftware.com


Modern Challenges For COBOL The Enterprise
One key reason for its enduring popularity is its widespread usage in legacy systems. Many
large organizations have heavily invested in COBOL applications over the years, creating
vast codebases that continue to power critical business processes.

Quantifying the exact number of large enterprises still utilizing COBOL for batch processing
proves challenging. Nevertheless, the continued significance of COBOL is unmistakable,
particularly within pivotal sectors such as banking, insurance, government, and healthcare.
These industries boast extensive legacy systems entrenched in COBOL, adept at managing
substantial datasets through the indispensable mechanism of batch processing.

While modernization efforts are underway to replace or modernize legacy COBOL systems,
the transition is a complex and expensive process. As a result, many large enterprises opt to
continue to rely on COBOL batch processing to ensure the stability and reliability of their
core business operations. Despite its enduring prevalence, COBOL faces distinctive
challenges.

✔ A pivotal issue is the scarcity of
COBOL programmers, primarily
stemming from the age demographic
of professionals versed in this
language. Developed in the late 1950s,
COBOL gained prominence in the
1960s and 1970s, leading to a current
workforce predominantly comprising
individuals from an older generation
who learned the language early in
their careers.

✔ Another challenge is the lack of new
talent entering the field. Many
universities and educational
institutions have phased out COBOL
from their curriculum in favor of more
modern programming languages. This
means that younger generations of
developers are not being exposed to
COBOL or acquiring the necessary
skills to work with it.

As a result, companies relying on COBOL systems face a scarcity of skilled professionals.
They often struggle to find qualified candidates to maintain and update their legacy
COBOL codebase. This shortage poses a significant risk, as these systems play a critical role
in various industries such as banking, insurance, and government.

Addressing this problem requires a multi-faceted approach. Companies can invest in
training programs or partnerships with educational institutions to bridge the knowledge
gap and encourage new talent to learn COBOL. Additionally, efforts can be made to
modernize COBOL systems and integrate them with more contemporary technologies,
making themmore appealing to younger developers.

Overall, the scarcity of COBOL programmers represents a significant challenge for
organizations that rely on legacy systems. Finding innovative solutions and fostering a new
generation of COBOL programmers is crucial to ensuring these systems' continued
functionality and success. Alternatively, modernization.

© 2024 KeyholeSoftware.com 6

http://keyholesoftware.com


COBOL Modernization Strategies
In the realm of COBOL applications, the predominant nature is batch processing, involving
executing a series of jobs or tasks without user interaction, typically scheduled to run at a
specific time or triggered by certain events. COBOL's strength in processing large amounts
of data makes it well-suited for batch operations.

There are two primary ways to modernize batch COBOL applications. One is to rewrite
applications from scratch using a modern application stack, and another is to utilize a code
conversion application that converts the legacy COBOL source code to a modern
application stack.

Both approaches have pros and cons, so let us review them briefly before giving the
Keyhole Software recommendation.

Code Generation
There are many applications that will transform COBOL source code into a targeted
modern language. Here are the pros and cons of this approach.

Pros of Code Generation

Time and cost-efficiency:
Automated code converters convert
COBOL code to a more modern
programming language, reducing the
need for manual rewriting. This approach
can significantly speed up the
modernization process, resulting in cost
savings.

Preservation of business logic:
Code converters often maintain the
original functionality and business logic of
the legacy COBOL application. This
ensures that the modernized version
performs the same tasks and meets the
existing functional requirements.

Cons of Code Generation

Limited modernization potential:
While code converters transform COBOL
code into a modern language, they may
not fully leverage the benefits of newer
technologies. Organizations may miss out
on advancements in performance,
scalability, and other modern features.

Debugging complexities:
Converted code can be difficult to debug,
as it may lack proper documentation or
adhere to different coding standards. This
can make it more challenging for
developers to identify and fix issues,
adding complexity and time in the long
run.

© 2024 KeyholeSoftware.com 7

http://keyholesoftware.com


Rewriting COBOL from Scratch
Pros of Rewriting from Scratch

Enhanced flexibility and scalability:
Rewriting applications from scratch allows
organizations to leverage the latest
technologies and frameworks, providing
opportunities for enhanced flexibility,
scalability, and performance.

Increased maintainability:
By rewriting the application, developers
can create a clean and modular codebase,
making it easier to maintain, update, and
add new features as the system evolves.

Cons of Rewriting from Scratch

Time and cost constraints:
Rewriting from scratch can be
time-consuming and costly, especially for
large and complex applications. The
development process may require
extensive resources, including skilled
developers and project management
efforts.

Business risks and disruption:
Rewriting applications may introduce
risks, including compatibility issues, data
migration challenges, and potential
disruption to the business during the
transition period. This requires careful
planning and potential downtime.

Keyhole Advice
Based on our extensive hands-on experience at Keyhole Software, where we have engaged
with both code conversion and rewriting approaches, we firmly advocate for the rewrite
option as the most cost-efficient and business-supportive strategy.

✔ Despite the initial allure of code conversion's apparent speed and cost-effectiveness,
our experience highlights higher long-term expenses due to technical debt and
maintainability issues.

✔ Our experience has demonstrated that rewriting legacy batch programs yields
tangible advantages when compared with code generation. Inevitably, rewriting
results in identifying and eliminating redundant legacy jobs whose original purposes
have become obsolete. Many legacy jobs are culled since their purpose is no longer
required.

While organizations may hesitate to remove outdated jobs, our experience shows that
doing so streamlines processing, efficiently utilizes resources, and expedites the entire
batch cycle. This streamlined process is easier to maintain, reducing complexity and
enhancing system reliability.

Essentially, the rewrite approach acts as a transformative tool, eliminating operational noise
and aligning batch processes with current organizational needs. While code conversion
may seem faster and cheaper initially, companies must factor in the technical debt and
maintainability burden in the long run.

© 2024 KeyholeSoftware.com 8

http://keyholesoftware.com


Modern Batch Processing

Introduction to Spring Batch
Spring Batch is a popular framework used for batch processing applications in the Java
ecosystem. Built on top of the Spring Framework, it provides a powerful and flexible
infrastructure to develop, execute, and manage batch jobs efficiently.

There are several reasons why Spring Batch applications are widely used for batch
processing:

Scaling and Performance:
Spring Batch enables parallel and distributed
processing, allowing applications to handle
large volumes of data and process them
efficiently. It supports various optimization
techniques, such as multithreading,
partitioning, and clustering, to enhance
performance and scalability.

Robust Error Handling:
Batch processing involves handling a large
number of records, and it is crucial to handle
exceptions and errors effectively. Spring
Batch provides robust error-handling
mechanisms, allowing developers to define
retry policies, skip policies, and customize
error-handling strategies. It ensures that
batch jobs can handle errors gracefully and
continue processing without manual
intervention.

Transaction Management:
Batch processing often involves complex data
operations, and maintaining data consistency
is essential. Spring Batch integrates smoothly
with Spring's transaction management
capabilities, enabling developers to define
transaction boundaries properly. It ensures
that data modifications within a batch job are
atomic and consistent.

Job Scheduling and Monitoring:
Spring Batch integrates with various
scheduling frameworks, such as
Quartz, to schedule batch jobs at
specific intervals. Additionally, it
provides comprehensive monitoring
and reporting facilities. Developers can
configure job status listeners,
implement custom metrics, and
visualize job execution details using
Spring Batch's monitoring and
management APIs.

Extensive Job Processing Features:
Spring Batch offers functionality that
simplifies common batch processing
tasks. It provides comprehensive data
readers and writers for various data
sources, including files, databases, and
web services. It also supports complex
transformation and validation
operations through its item processors.
Furthermore, Spring Batch includes
features like chunk-based processing,
partitioning, and restartability, making
it easy to build efficient and reliable
batch applications.

Spring Batch is widely used for batch processing applications due to its scalability,
performance, error-handling capabilities, transaction management, job scheduling, and
extensive job processing features. It empowers developers to create robust and efficient

© 2024 KeyholeSoftware.com 9

http://keyholesoftware.com


batch applications and provides a foundation for managing complex data processing
workflows.

How Spring Batch Works
Spring Batch is a lightweight framework that provides developers with the necessary tools
to design, configure, and execute batch-processing workflows.

Spring Batch is designed to handle the demands of batch processing that are traditionally
handled by “Big Iron” mainframes. The COBOL language is built for the mainframe's ability
to process large data sets. This is the main feature of Spring Batch that allows it to be a
suitable replacement for COBOL.

The framework also offers various features like parallel processing, chunk-based processing,
transaction management, and error handling, which enable developers to build robust and
scalable batch processing applications. By leveraging Spring Batch, developers can simplify
the implementation of complex batch jobs, enhance performance, and ensure reliability in
data processing tasks.

✔ The role of a Spring Batch job is to facilitate the automation of large-scale data
processing tasks. A Spring Batch job typically consists of one or more steps, where
each step represents a specific task or operation, such as reading data from a source,
processing or transforming it, and writing it to a target destination.

Jobs are defined using elements provided by the framework that represent “batch”
programming nomenclature. These elements are shown in the diagram below.

These elements are composed to define a batch execution job.

✔ The Step level in the Spring Batch is where the fundamental operations of reading,
transforming, and writing data are orchestrated within a job execution.

© 2024 KeyholeSoftware.com 10

http://keyholesoftware.com


Steps are structured with three essential parts: reader, processor, and writer.

✔ Reader: The Reader is responsible for fetching or reading data from diverse sources,
such as databases, files, or external systems. It defines how data is input into the
batch processing.

✔ Processor: The Processor, a crucial part of the step, is implemented to apply
transformation and business logic to data flowing from reading to writing. It applies
business logic, data manipulations, or any required transformations to the input data
before passing it to the next stage.

✔Writer: The Writer component handles the output part of the process. It defines how
the processed data is written or persisted to the desired destination, such as
databases, files, or external systems.

Spring Batch provides numerous reading and writing implementations, which saves a lot of
time. Reading and writing implementations are provided for many common data sources;
you can read or write from flat files, delimited or in SDF format, relational data sources, XML,
and more. They are applied and customized using configuration parameters, which saves
significant implementation time.

Additionally, step execution provides a place to apply transaction demarcation, ensuring
data integrity throughout the batch processing workflow.

Chunking Is The Key
Ensuring robust error handling and recovery mechanisms during the execution of
large-scale jobs, particularly within enterprises managing extensive data records, is a critical
challenge. The complexity arises when errors occur mid-job, requiring a seamless rollback
of changes and a restart from the point of failure.

Developing a custom solution for error recovery can be an intimidating endeavor. The
intricacies of crafting a reliable mechanism to handle such scenarios pose significant
challenges, making the "roll-your-own" approach a formidable task. Spring Batch addresses
this complexity seamlessly, with its intrinsic support for error recovery and restarts,
leveraging a fundamental concept known as "chunking."

✔ Chunking occurs at the step level—where readers, writers, and processors are
defined—and where configuration parameters exist to define transaction
management. Steps are intelligently configured to execute upon one or more
designated records (chunks) at a time. In the event that an error or exception occurs,
the job can be gracefully restarted from this point.

© 2024 KeyholeSoftware.com 11

http://keyholesoftware.com


The data exchange between steps' reading, processing, and writing elements relies on
Plain Old Java Objects (POJOs). These POJOs, encapsulating the data, are serialized within
a chunk and persistently stored by Spring Batch for seamless deserialization during a
restart. The diagram below illustrates step chunking behavior.

The Spring Batch framework provides a whole arsenal of Readers and Writers for multiple
data types that are commonly used in enterprise batch applications. The framework also
offers mechanisms for monitoring, control flow, parallelism, error handling, and launching
of batch jobs.

© 2024 KeyholeSoftware.com 12

http://keyholesoftware.com


The Rewrite Experience
Keyhole has helped numerous organizations modernize their COBOL batch
implementations using the Spring Batch framework. We’ve also helped maintain platforms
that were built using code generation tools, and through this experience, our
recommendation remains steadfast to rewrite applications into Spring Batch applications
from scratch.

Rewriting may seem like a time-consuming endeavor. However, with the ready-to-use and
pre-built framework elements and the robust features of a programming language like
Java, it requires significantly less code than the original COBOL program.

As a positive side effect, there’s a good chance, during the rewrite process, that you will find
COBOL programs that are no longer needed and can be eliminated from the batch
window. It seems common for organizations over time to not remove these programs for
fear of them breaking something unknown; it was safer just to let them run.

Rewrite Cost Savings Proposition
While IBM doesn't publicly disclose the monthly leasing costs of a mainframe, it is widely
understood that the investment is substantial, particularly for large entities like banks,
insurance companies, or government agencies utilizing advanced Z series mainframes.
Generally, the cost can range from hundreds of thousands to millions of dollars annually,
depending on contract negotiation, the specific model and configuration of the mainframe,
the scale of computational power required, and the usage patterns.

Calculating the “real” cost of migrating a batch workload to cloud-native is difficult to do in
a vacuum. Obviously, there are direct costs associated with running cloud-native workloads
– things like compute instances, storage, networking, and data transfer, for instance – and
those costs can be estimated and planned for. The major cloud vendors provide pricing
details for each service offering, which can be used for fairly accurate cost estimation based
on the scale required.

AWS publishes pricing sheets for all of their services – for example, compute capacity
pricing for their on-demand, reserved, and spot instance pricing can be seen here:

✔ https://aws.amazon.com/ec2/pricing

Using the published pricing, it’s straightforward to see that the cost for cloud-computing
resources required to replace a legacy system is significantly less, even at large scale. Simply
in terms of computing costs, you can see that moving the application to cloud-native will
quickly pay for itself.

It’s important to point out that a batch environment is not simply a virtual server with a JDK
installed. Batch processing often needs to be choreographed and orchestrated in order to
© 2024 KeyholeSoftware.com 13

https://aws.amazon.com/ec2/pricing/on-demand/
http://keyholesoftware.com


mirror the throughput that a mainframe environment provides. But, the key takeaway is
that pure computing power is relatively inexpensive.

There are other “costs'' that aren’t as straightforward to calculate but should be considered.
Data migration, skill development and training, and operational costs of process change
are among the shortlist that need to be accounted for.

Spring Batch provides a sufficient architecture for replacing COBOL applications and JCL,
but other scheduling software, such as Quarkus, will have to be implemented in the cloud
environment. This is discussed more in detail in the subsequent Job Scheduling section.

✔ AWS does offer a ready-to-use configured batch environment; information can be
found at https://aws.amazon.com/batch.

It’s also important to point out that a cloud-based batch environment can be established
using other top-tier cloud computing offerings, namely Microsoft Azure and Google. Cost
differences with this approach would be negligible.

AI Assistance Unleashed
If you haven't yet explored ChatGPT’s1 generative AI platform or other implementations like
Bard2 from Google, you have been missing out. This technology is a game-changer,
especially for developers. It surpasses traditional Google search by providing precise
solutions to prompts instead of a mere list of possibilities. What sets it apart is its contextual
understanding, allowing users to fine-tune responses with ongoing prompts.

AI is causing—and will continue to cause—significant disruptions across industries. The
software development field is currently experiencing this transformation. Reports highlight
increased productivity as developers leverage AI, particularly features like GitHub CoPilot3,
which anticipates and suggests code improvements during active software development
and problem-solving.

In the context of producing Spring Batch Jobs from COBOL listings, the GPT client,
facilitated by tools like GitHub Copilot, proves to be a valuable asset.

One approach involves feeding sections of a COBOL program to ChatGPT, prompting it to
convert them into Spring Batch elements. Alternatively, developers can seek
human-readable explanations for specific sections of COBOL code from GPT, streamlining
the modernization process.

Example Generating Elements with ChatGPT or CoPilot

The example below demonstrates how ChatGPT can “assist” the developer in generating
elements of a Spring Batch application based upon the corresponding COBOL source code.

3 GitHub Copilot, https://github.com/features/copilot
2 Bard, https://bard.google.com/
1 ChatGPT, https://chat.openai.com/

© 2024 KeyholeSoftware.com 14

https://aws.amazon.com/batch
https://github.com/features/copilot
https://bard.google.com/
https://chat.openai.com/
http://keyholesoftware.com


In this example, we will use ChatGPT or CoPilot to transform a COBOL working storage
structure into a POJO for Spring Batch. The provided working storage structure defines a
table of employees with ID, name, and age fields.

WORKING-STORAGE SECTION.
01 NUMBERS OCCURS 10 TIMES.

05 NUMBER PIC 9(3).
01 EMPLOYEE-TABLE.

05 EMPLOYEE OCCURS 100 TIMES.
10 EMP-ID PIC X(5).
10 EMP-NAME PIC X(20).
10 EMP-AGE PIC 99.

Prompting ChatGPT to turn this into a Plain Old Java Object (POJO) results in the following:

As you can see, an entire COBOL program can be fed into ChatGPT and prompted to return
an equivalent Spring Batch solution.

© 2024 KeyholeSoftware.com 15

http://keyholesoftware.com


Generating an Entire Application

To illustrate ChatGPT's capabilities, let's also utilize it to generate an entire Spring Batch
solution from COBOL source code. Our example will use a simple COBOL application which
involves reading and writing from a person database, and outputting address information
to a text file in SDF format.

IDENTIFICATION DIVISION.
PROGRAM-ID. ADDRESS-REPORT.
DATA DIVISION.

WORKING-STORAGE SECTION.
01 WS-DB-ERROR PIC X(100).
01 WS-ADDRESS-REC.

05 WS-FIRST-NAME PIC X(20).
05 WS-LAST-NAME PIC X(20).
05 WS-STREET-ADDRESS PIC X(50).
05 WS-CITY PIC X(30).
05 WS-STATE PIC X(20).
05 WS-ZIP PIC X(10).

01 WS-REPORT-LINE PIC X(80).
01 EOF-FLAG PIC X VALUE 'N'.

PROCEDURE DIVISION.
OPEN INPUT PERSON-DB.
OPEN OUTPUT ADDRESS-REPORT.

PERFORM UNTIL EOF-FLAG = 'Y' READ PERSON-DB INTO WS-ADDRESS-REC AT END SET
EOF-FLAG TO 'Y' END-READ
MOVE WS-FIRST-NAME TO WS-REPORT-LINE
MOVE WS-LAST-NAME TO WS-REPORT-LINE(21:20)
MOVE WS-STREET-ADDRESS TO WS-REPORT-LINE(41:50)
MOVE WS-CITY TO WS-REPORT-LINE(91:30)
MOVE WS-STATE TO WS-REPORT-LINE(122:20)
MOVE WS-ZIP TO WS-REPORT-LINE(143:10)

WRITE ADDRESS-REPORT FROM WS-REPORT-LINE

END-PERFORM
CLOSE PERSON-DB, ADDRESS-REPORT.
STOP RUN.

Upon requesting ChatGPT to convert this COBOL program to a Spring Batch application, it
produced the following Java Spring Batch source code.

import org.springframework.batch.core.Job;

import org.springframework.batch.core.JobParameters;

import org.springframework.batch.core.Step;

import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;

import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;

import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;

import org.springframework.batch.core.launch.support.RunIdIncrementer;

import org.springframework.batch.item.ItemProcessor;

import org.springframework.batch.item.ItemReader;

import org.springframework.batch.item.ItemWriter;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.core.io.ClassPathResource;

© 2024 KeyholeSoftware.com 16

http://keyholesoftware.com


@Configuration

@EnableBatchProcessing

public class AddressReportBatchConfig {

@Autowired

private JobBuilderFactory jobBuilderFactory;

@Autowired

private StepBuilderFactory stepBuilderFactory;

@Bean

public ItemReader<WsAddressRec> itemReader() {

FlatFileItemReader<WsAddressRec> reader = new FlatFileItemReader<>();

reader.setResource(new ClassPathResource("person-db.txt")); // Update file path

reader.setLineMapper(new DefaultLineMapper<WsAddressRec>() {{

setLineTokenizer(new FixedLengthTokenizer() {{

setNames("wsFirstName", "wsLastName", "wsStreetAddress", "wsCity", "wsState",

"wsZip");

setColumns(new Range(1, 20), new Range(21, 40), new Range(41, 90), new Range(91,

120), new Range(121, 140), new Range(141, 150));

}});

setFieldSetMapper(new BeanWrapperFieldSetMapper<WsAddressRec>() {{

setTargetType(WsAddressRec.class);

}});

}});

return reader;

}

@Bean

public ItemProcessor<WsAddressRec, WsReportLine> itemProcessor() {

return new AddressReportItemProcessor();

}

@Bean

public ItemWriter<WsReportLine> itemWriter() {

FlatFileItemWriter<WsReportLine> writer = new FlatFileItemWriter<>();

writer.setResource(new ClassPathResource("address-report.txt")); // Update file path

writer.setLineAggregator(new DelimitedLineAggregator<WsReportLine>() {{

setDelimiter("");

setFieldExtractor(new BeanWrapperFieldExtractor<WsReportLine>() {{

setNames(new String[] { "wsFirstName", "wsLastName", "wsStreetAddress", "wsCity",

"wsState", "wsZip" });

}});

}});

return writer;

}

@Bean

public Step step(ItemReader<WsAddressRec> itemReader, ItemProcessor<WsAddressRec, WsReportLine>

itemProcessor, ItemWriter<WsReportLine> itemWriter) {

return stepBuilderFactory.get("step")

.<WsAddressRec, WsReportLine>chunk(10)

.reader(itemReader)

.processor(itemProcessor)

© 2024 KeyholeSoftware.com 17

http://keyholesoftware.com


.writer(itemWriter)

.build();

}

@Bean

public Job job(Step step) {

return jobBuilderFactory.get("addressReportJob")

.incrementer(new RunIdIncrementer())

.start(step)

.build();

}

}

public class WsAddressRec {

private String wsFirstName;

private String wsLastName;

private String wsStreetAddress;

private String wsCity;

private String wsState;

private String wsZip;

// Getters and setters

}

public class WsReportLine {

private String wsFirstName;

private String wsLastName;

private String wsStreetAddress;

private String wsCity;

private String wsState;

private String wsZip;

// Getters and setters

}

ChatGPT not only effortlessly translated the COBOL logic into Java Spring Batch but also
provided crucial guidance. It highlighted the use of Spring Batch's modular abstractions for
reading and writing data, making the code more maintainable. Moreover, it emphasized
the need for customization, reminding developers to handle exceptions appropriately and
address specific requirements like file paths and delimiters.

You’ll notice that the example reads and writes from a text file. As a specific data source
wasn’t defined, ChatGPT intelligently inferred the use of a text file for reading and writing
data, showcasing its adaptability. However, for a more refined conversion, specifying the
type of data source is recommended.

It's essential to acknowledge that the generated program does have some issues, namely
referencing structures it didn't provide. However, it offers a substantial 90% solution with
good naming conventions and structure, resembling a human developer's. This makes
© 2024 KeyholeSoftware.com 18

http://keyholesoftware.com


sense since the programming style is machine-learned from human-produced source
code. It's important to note that compiling and making the program work will require an
experienced developer familiar with Spring Batch.

Nevertheless, leveraging this generated code significantly reduces development time. This
streamlined conversion process showcases how ChatGPT simplifies complex tasks,
accelerating the modernization of legacy systems with precision and efficiency. As
organizations embark on their modernization journey, the partnership with ChatGPT and
its competitors emerges as a game-changer, unlocking new possibilities in code
transformation and software development.

Key Team Roles and Responsibilities
If you go down the path of a “rewrite,” there are key roles and responsibilities that must be
assigned to your team.

Offshoring the development of the rewrite is questionable at best. There is a high amount
of communication required between the analyst, developer, and other members of the
team. Having to do this in different time zones and languages could be a barrier.

Key Personnel
Spring Batch Developers

It's essential to have developers well-versed in Spring Batch. Avoid the pitfall of assigning
developers experienced in Java/Spring but unfamiliar with Spring Batch intricacies.

Keyhole has seen—and rescued—many projects where the lack of expertise in utilizing the
Spring Batch framework led to issues. In such instances, despite initial appearances of
functionality, these applications faltered under actual load due to improper
implementation.

It’s noteworthy that Spring Batch has no significant learning curve. Suppose you have an
experienced Spring Batch developer. In that case, it is entirely feasible that this individual
can mentor other experienced developers with a significant background in Java and
Spring.

Domain Analyst

Another important team role is a domain analyst. The domain analyst focuses on the
COBOL batch programs, understanding the current applications. The individual must
understand—and preferably be currently working with—the COBOL applications. They can
answer questions regarding the “what” and “where” of a given program.

It is important to note that COBOL is not a complex language to learn. We at Keyhole
Software have found that the requirements documents are the actual COBOL source code
listings. Spring Batch developers, with the help of the domain analyst, will quickly learn how
to read them and will be able to rewrite the batch job in Spring Batch.

© 2024 KeyholeSoftware.com 19

http://keyholesoftware.com


Testers

In this project, testing can primarily be conducted by the development team itself. The
supporting test environment is described in the section below, emphasizing that the
output from any given batch run will generate data in various formats.

Developers, intimately familiar with the output as they are responsible for writing the batch
job that produces it, take the lead in validating and testing their work.

✔ A key validation approach involves comparing the production batch output from the
previous day with the test data the team is currently working on. This validation
process is straightforward, aiming for a perfect match between the output from the
ongoing job and the previous night's production run.

Developers can leverage free data compare tools and utilities to facilitate this validation.
These tools assist in meticulously assessing the consistency and accuracy of the
modernized batch processes. This comprehensive validation process ensures that the
modernized system aligns seamlessly with the established production standards and
meets the expectations of reliability and precision.

Project Management / Scrum Master

You will need a Project Manager or Scrum Master to oversee the entire modernization
project. They will be responsible for planning, coordinating, and meeting project
milestones. The role ensures adherence to requirements and facilitates seamless
communication among team members. The Project Manager or Scrum Master will
meticulously track and monitor all jobs undergoing rewriting.

While we generally suggest an agile approach, whether adopting a waterfall or agile task
assignment approach depends on your project preferences, as the requirements are largely
black and white.

In summary, a well-rounded team comprising skilled developers, a domain analyst,
meticulous testers, and an efficient project manager is integral to the success of the COBOL
batch program rewrite. Clear communication and expertise in Spring Batch are central to
overcoming potential pitfalls and ensuring a smooth transition.

Establishing a Test Environment
In the preceding section, we outlined the approach to testing rewritten batch programs,
involving a comparison with production output from the previous day's batch run. To
facilitate this process, it is essential to clone production data before executing the
production batch jobs. This ensures that the test environment mirrors the conditions of the
live production environment, allowing for a thorough and reliable evaluation of the
modernized batch processes.

© 2024 KeyholeSoftware.com 20

http://keyholesoftware.com


The cloned data source allows developers to run their new Spring Batch jobs against the
same data that the COBOL production jobs were executed against.

Job Scheduling
An IBM mainframe constitutes a centralized, homogeneous system encompassing
hardware, operating system, programming language, application lifecycle management,
and job scheduling. Mainframe operating systems are equipped with Job Control Language
(JCL), a defined language for scheduling and managing job execution.

Multiple solutions exist for job scheduling in Spring Batch, catering to different applications'
varied requirements and constraints.

A popular and widely adopted option involves leveraging the intrinsic scheduling features
offered by the Spring Framework. Spring's scheduling capabilities empower developers to
configure and schedule tasks effortlessly through annotations or XML configuration. This
approach is often suitable for simple scheduling needs, where tasks need to be executed
periodically or at fixed intervals. It delivers flexibility and simplicity, addressing basic
scheduling needs without the requirement for extra dependencies.

Another alternative is to use external schedulers like Quartz or cron expressions.
Quartz4 is a popular open-source scheduler for Java applications that provides more
advanced scheduling features, such as cron-like expressions for defining complex
schedules. It integrates well with Spring Batch and allows developers to schedule batch
jobs based on various conditions, such as specific dates, times, or intervals. Quartz can be
configured and managed programmatically or through configuration files, giving
developers greater flexibility and control over job scheduling.

Cloud-based solutions like AWS Batch5 or Google Cloud Scheduler6 present additional
options for scheduling Spring Batch jobs. These services provide highly scalable and
reliable job scheduling and execution capabilities within a cloud environment. They
efficiently manage large volumes of data and processing tasks, proving beneficial for
applications with elevated processing demands or unpredictable workloads. Additionally,
these cloud-based solutions often include supplementary features like monitoring, fault
tolerance, and auto-scaling, substantially enhancing the overall reliability and performance
of batch job scheduling.

In summary, Spring Batch provides multiple solutions for job scheduling, ranging from
built-in scheduling capabilities to external schedulers like Quartz or cloud-based services.
The choice of solution depends on the application's specific requirements, such as the
complexity of the scheduling needs, scalability requirements, and the desired level of
control and flexibility.

6 Google Cloud Scheduler, https://cloud.google.com/scheduler
5 AWS Batch, https://aws.amazon.com/batch/
4 Quartz Job Scheduler, https://www.quartz-scheduler.org/

© 2024 KeyholeSoftware.com 21

https://cloud.google.com/scheduler
https://aws.amazon.com/batch/
https://www.quartz-scheduler.org/
http://keyholesoftware.com


Conclusion
In the face of 'zombie' COBOL programs haunting legacy systems,
organizations are presented with an opportunity for strategic
transformation. This white paper advocates rewriting COBOL batch
programs using Spring Batch as a catalyst for change.

The transition to Spring Batch is not just a technological upgrade; it's a
calculated move toward operational excellence. With its foundation in
the Java ecosystem, Spring Batch integrates seamlessly with modern
databases, cloud services, and other enterprise technologies, providing
agility and interoperability that COBOL simply cannot match. An
investment in COBOL modernization pays dividends in reduced
operational costs and enhanced performance.

We’ve shown that Spring Batch significantly reduces batch processing
windows, achieving efficiencies previously unattainable with COBOL.
Optimized data handling, parallel processing, and harnessing modern
hardware lead to faster data processing, reduced resource consumption,
and increased throughput. We also introduced how ChatGPT and LLM
tools like GitHub CoPilot can assist in the modernization process.

These technical improvements have real business implications, such as
better decision-making through timely data availability, enhanced
customer experiences through quicker processing times, and cost
savings.

Rewriting in Spring Batch offers an escape from the cycle of dependency
on outdated COBOL programs. This transition is pivotal for modernizing IT infrastructure,
aligning with technological trends, and ensuring responsiveness to today's dynamic
business environment. The enduring benefits—reduced operational costs, enhanced
performance, and improved maintainability—solidify Spring Batch as an irresistible
proposition for organizations ready to bid farewell to their COBOL legacy.

White Paper Author: David Pitt, Founder, Keyhole Software
Publishing Date: February 2024

Contact Keyhole Software
Company Website: https://keyholesoftware.com
Phone: 877-521-7769
Email: asktheteam@keyholesoftware.com
Headquarters: 11205 W 79th Street, Lenexa, KS 66214

© 2024 KeyholeSoftware.com 22

https://keyholesoftware.com
https://keyholesoftware.com
mailto:asktheteam@keyholesoftware.com
http://keyholesoftware.com

